Math 115
Spring 2017
Lecture 13

Quick Review
(1) write $4 x-3 y=9$ in slope-Int.
form $\quad-3 y=-4 x+9$

$$
\begin{aligned}
& y=-4 x+9 \\
& y=\frac{-4}{-3} x+\frac{9}{-3}
\end{aligned} \quad \checkmark y=\frac{4}{3} x-3
$$

(2) Find d, M, and m for $\overline{A B}$ where $A(-6,0)$ and $B(0,8)$.

$$
\begin{aligned}
d & =\sqrt{(-6-0)^{2}+(0-8)^{2}} \quad M\left(\frac{-6+0}{2}, \frac{0+8}{2}\right) \\
& =\sqrt{(-6)^{2}+(-8)^{2}}=\sqrt{100}=10 \\
& m=\frac{0-8}{-6-0}=\frac{-8}{-6}=\frac{8}{6}=\frac{4}{3}
\end{aligned}
$$

find equ of a line parallel to $y=\frac{3}{4} x-2$ that contains the point $(4,0)$.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{3}{4}(x-4) \\
y=\frac{3}{4} x-\frac{3}{4} \cdot 4
\end{gathered}
$$

find eau of a line that contains $(0,-3)$ and is perpendicular to the line $y=\frac{2}{3} x+4$.
Graph both lines. $y--3=\frac{-3}{2}(x-0)$

$$
y-y_{1}=m\left(x-x_{1}\right) \quad y+3=\frac{-3}{2} x \quad y=\frac{-3}{2} x-3
$$

find eqn of a line that contains $(-5,7)$ with
(1) Zero slope
(2) No slope
(3) undefined

Horizonal line

$$
y=b \quad y=7
$$

$$
\begin{aligned}
& \text { Vertical line © } \\
& 8 x=a \quad x=-5
\end{aligned}
$$

Graph غ. Shade

$$
\left\{\begin{array}{l}
x<3 \\
x>-2 \\
y \geq-\frac{3}{4} x-2 \\
y \leq 4
\end{array}\right.
$$

Solve by graphing

$$
\left\{\begin{array}{l}
y=\frac{2}{3} x-2 \\
2 x+3 y=6
\end{array}\right.
$$

when we have at least one Solution, System is Consistent

when there is exactly
one Solution, or when there is no Solution Equations are independent.

The sum of two numbers is 5 . Their difference is $3 . \longrightarrow x$ by
Set-up a system of linear equs in two variables. Use graphing to Solve

$$
\left\{\begin{array}{l}
x+y=5 \\
x-y=3
\end{array} \text { System } \rightarrow\right. \text { Consistent }
$$

Solve by Subs.

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
3 x+2 y=4 \\
y=3-x
\end{array} \Rightarrow \begin{array}{r}
3 x+2(3-x)=4 \\
3 x+6-2 x=4
\end{array}\right. \\
\quad x=-2
\end{array}\right\} \begin{array}{r}
3=3-(-2) \\
\text { at least one } \\
\text { Soln } \rightarrow \text { System is } \quad y=3+2 \quad y=5
\end{array}
$$

Final Ans $(-2,5)$
Exactly one Soln Final
\rightarrow Eqns are independent.

Solve by Subs.

$$
\left\{\begin{array}{l}
4 x-3 y=7 \\
y=\frac{4}{3} x+2
\end{array}\right.
$$

$$
\begin{aligned}
& 4 x-3\left(\frac{4}{3} x+2\right)=7 \\
& 4 x-3 \cdot \frac{4}{3} x-3 \cdot 2=7
\end{aligned}
$$

No son

$$
4 x-4 x-6=7
$$

system is inconsistent.
$-6=7$
Equs are independent.

Solve by Subs.

$$
\left\{\begin{array}{l}
3 x+5 y=10 \\
y=\frac{-3}{5} x+2
\end{array}\right.
$$

$$
\begin{gathered}
3 x+5\left(\frac{-3}{5} x+2\right)=10 \\
3 x+5 \cdot \frac{-3}{5} x+5 \cdot 2=10 \\
3 x-3 x+10=10 \\
10=10 \\
\text { True }
\end{gathered}
$$

Infinitely Many Solus.
system is consistent
Eqns are dependent.

Solve by Elimination Method:

$$
\left.\begin{array}{l}
\left\{\begin{array}{lc}
3 x+y=4 \\
2 x-y=6
\end{array}\right.
\end{array} \begin{array}{c}
3(2)+y=4 \\
5 x=10
\end{array} \quad \begin{array}{c}
6+y=4 \\
5=2
\end{array}, \begin{array}{l}
y=-2
\end{array}\right\}
$$

The perimeter of a rectangular garden is 32 meters.
The length is 1 m longer than twice its width. Use system of linear equs to find its dimensions.

$$
\left\{\begin{array}{l}
2 L+2 w=32 \\
L=2 w+1 \\
2(2 w+1)+2 w=32 \\
4 w+2+2 w=32 \\
6 w=30
\end{array} \rightarrow \begin{array}{l}
L
\end{array}\right.
$$

Solve by Elimination

$$
\begin{gathered}
2\left\{\begin{array}{l}
2 x+3 y=5 \\
3\left[\begin{array}{l}
2 y \\
3 x-2 y
\end{array}\right. \\
2(4)+3 y=5 \\
3 y=5-8 \\
y=-1
\end{array} \Rightarrow \begin{array}{l}
4 x+6 y=10 \\
9 x-6 y=42
\end{array}\right. \\
x=52 \\
(3 x=4,-1)
\end{gathered}
$$

The sum of two angles is 90°.
Twice one plus 5 times the other is 360°. find both angles

$$
\begin{array}{r}
-2\left\{\begin{array}{l}
x+y=90 \\
2 x+5 y=360
\end{array}\right. \\
\frac{\left\{\begin{array}{l}
-x x-2 y=-180 \\
2 x+5 y=360
\end{array}\right.}{3 y=180} \\
y=60
\end{array}
$$

Angles are Complementary.

$$
\begin{gathered}
x+60=90 \\
x=30 \\
30^{\circ} \text { غ } 60^{\circ}
\end{gathered}
$$

The sum of two angles is 180° "They are supplementary". the difference of 4 times one and 3 times

$$
\begin{aligned}
& \text { The other one is } 160^{\circ} . \\
& 3\left\{\begin{array}{l}
x+y=180 \\
4 x-3 y=160
\end{array}\right. \\
& \left\{\begin{array}{l}
3 x+3 y=540 \\
4 x-3 y=160 \\
7 x=700 \\
x=100
\end{array}\right. \\
& 100^{\circ} \text { \& } 80^{\circ}
\end{aligned}
$$

Rafael has $\$ 3.50$ in quarters and nickels. he has 8 more quarters than nickels. How many of each?

$$
\begin{align*}
& x \rightarrow \neq \text { of quarters } \\
& y \rightarrow \neq 1 \text { of nickels } \\
& 5(y+8)+y=70 \\
& 5 y+40+y=70 \\
& 5 y=30 \quad\left\{\begin{array}{l}
25 x+5 y=350 \\
x=y+8
\end{array}\right. \\
& \begin{array}{l}
x=5 \\
13(.25)+5(.05)=
\end{array}\left\{\begin{array}{l}
5 x+y=70 \\
x=y+8
\end{array}\right. \\
& \begin{array}{l}
5=13 \\
\text { Quarters } \\
\varepsilon
\end{array} \\
& \text { Nickels }
\end{align*}
$$

A Collection of 57 Coins is made up of quarters ε dimes has a value of $\$ 9$.
How many of each?

$$
\begin{aligned}
& \begin{array}{l}
x \rightarrow \text { \# quarters } \\
y \rightarrow \text { \# Dimes }
\end{array} \quad \div\left\{\begin{array}{l}
x+y=57 \\
25 x+10 y=900
\end{array}\right. \\
& y \rightarrow \text { \# Dimes }-2 \int x+y=57 \\
& \left\{\begin{aligned}
& 22 \text { Quarters } \\
& \varepsilon_{1} \\
& 35 \text { Dimes }
\end{aligned}\right\} \begin{cases}5 x & +2 y=180 \\
\begin{cases}-2 x & -2 y \\
5 x & +2 y\end{cases} & =-114 \\
3 x & =66\end{cases}
\end{aligned}
$$

School sold some tickets for a play and Collected $\$ 265 . \quad K \rightarrow \#$ of kids, $A \rightarrow \#$ of Adults:
Kid's ticket $\rightarrow \$ 5 \div 5\left\{\begin{array}{l}5 K+10 A=265 \\ A=2 K-16\end{array}\right.$
Adult's ticket $\rightarrow \$ 10\left\{\begin{array}{l}A=2 K-16\end{array}\right.$
The number of adults was 16 fewer than twice the number of kids,

How many of each?

$$
\begin{gathered}
k+2(2 k-16)=53 \\
k+4 k-32=53 \\
5 k=85
\end{gathered}
$$

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
k+2 A=53 \\
A
\end{array}=2 k-16\right.
\end{array}\right\} \begin{gathered}
A=2(17)-16 \\
=34-16 \\
A=18
\end{gathered}
$$

Irene found 40 bills, some fifty-dollar bills, Some twenty-dollar bills.
Total value $\$ 1160$. How many of each?

$$
\begin{aligned}
& x \rightarrow \text { \# of } 50 \text {-dollar bills } \Rightarrow\left\{\begin{array}{l}
x+y=40
\end{array}\right. \\
& y \rightarrow \neq \text { of } 20 \text {-dollar bills }: 10[50 x+20 y=1160 \\
& \left\{\begin{aligned}
12 \quad 50 \text {-dollar bills } \\
\dot{\varepsilon}
\end{aligned} \quad \begin{array}{rl}
-2 \\
28 & 20 \text {-dollar bills }
\end{array} \quad \begin{array}{l}
x+y \\
x+2 y \\
5 x+116
\end{array}\right. \\
& x=12 \\
& y=28
\end{aligned}
$$

Aaron spent $\$ 270$ in 10 -dollar bills $\dot{\varepsilon}$. 5-dollar bills.

He used 6 less Fives than Tens.
How many of each?

$$
\begin{aligned}
& \text { How many of each: } \\
& \begin{array}{l}
x \rightarrow \# \text { of } 10 \text {-dollar bills }
\end{array} \div\left\{\begin{array}{l}
10 x+5 y=270 \\
y \rightarrow \# \text { of } 5 \text {-dollar bills }
\end{array}\right. \\
& \begin{array}{l}
2 x+x-6=54 \\
3 x=60 \\
x=20 \\
y=14
\end{array} \\
& \begin{array}{ll}
2 x & +y=54 \\
y=x-6
\end{array} \\
& 20 \\
& \hline 10 \text { bills } \\
& 14 \\
& \$ 5 \text { bills }
\end{aligned}
$$

SG 10 is due tomorrow.
SG 11 Due Thursday.
Exam II is ThursdaY.
Mixture Problems:
A lab assistant needs 70 liters of 8% alcohol Soln. There are unlimited supply of 5% \& 12\% alcohol Solus. How many liters of each?

$$
\begin{aligned}
& \frac{\mid 5 \%}{x}+\frac{\lfloor 12 \%}{y}=\frac{\lfloor 70}{70} \\
& \left\{\begin{array}{l}
x+y=70 \\
100 \frac{5}{100} x+\frac{12}{100} y=\frac{8}{100} \cdot 70
\end{array}-5\left\{\begin{array}{l}
x+y=70 \\
5 x+12 y=560
\end{array}\right.\right. \\
& \begin{array}{c}
30 \text { liters of } 12 \% \text { Sol } \\
\varepsilon \\
40 \text { liters of } 5 \% \text { Sol. }
\end{array}\left\{\begin{array}{l}
-5 x-5 y=-350 \\
5 x+12 y=560 \\
7 y=210 \\
y=30
\end{array}\right.
\end{aligned}
$$

How many cups of pure sour Cream must be mixed with 12 cups of 40% Sour Cream to get a 60% Sour cream?

$$
\begin{aligned}
& \underbrace{\lfloor 100 \%}_{x}\rfloor+\underbrace{\lfloor 40 \%}_{12} \mid \\
& \left\{\begin{array} { l }
{ x + 1 2 = y } \\
{ \frac { 1 0 0 } { 1 0 0 } x + \frac { 2 4 0 } { 1 0 0 } \cdot 1 2 = \frac { 3 6 0 } { 1 0 0 } \cdot y }
\end{array} \left\{\begin{array} { l }
{ x + 1 2 = y } \\
{ 5 }
\end{array} \quad \left\{\begin{array}{l}
x+\frac{2}{5} \cdot 12=\frac{3}{5} y
\end{array}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+12=y \\
5 x+24=3 y \\
5 x+24=3(x+12) \\
5 x+24=3 x+36 \\
2 x=12 \quad x=6
\end{array}\right.
\end{aligned}
$$

we need 6 cups of pure sour Cream to mix with 12 cups of 40% Sour cream to get 18 cups of 60% Sour Cream.
we need 12 liters of 36% acid Soln.
we have two Solus, 451. acid है 181 . acid. How many liters of each?

$$
\begin{aligned}
& \div\left\{\begin{array} { l }
{ x + y = 1 2 } \\
{ 4 5 x + 1 8 y = 3 6 \cdot 1 2 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
x+y=12 & x=8 \\
5 x+2 y=48 & y=4
\end{array}\right.\right. \\
& \begin{array}{l}
8 \text { liters of } 45 / . \text { Sols. } \\
4
\end{array}, 18 \%
\end{aligned}
$$

